United States Patent

US009330372B2

(12) 10) Patent No.: US 9,330,372 B2
Koutyrine et al. (45) Date of Patent: May 3, 2016
(54) GENERATING AN IMPROVED 2002/0170042 Al* 11/2002 Doetal. ... 717/143
DEVELOPMENT INFRASTRUCTURE 2005/0210382 Al* 9/2005 Cascini 715/531
2007/0124009 Al* 5/2007 Bradleyetal. 700/99
. 2008/0313595 Al* 12/2008 Boulineau etal. 717/101
(71) Applicants:Oleg Koutyrine, Dielheim (DE); Klaus 2009/0259682 Al* 102009 Baldwin etal. 707/103 R
Kopecz, Walldorf (DE) 2009/0319312 AL* 12/2009 Moerdler et al. .. 705/7
2009/0326997 Al* 12/2009 Beckeretal. 705/7
(72) Inventors: Oleg Koutyrine, Dielheim (DE); Klaus 2010/0083215 Al* 4/2010 Bogletal. ... - 717/105
Kopecz, Walldorf (DE) 2011/0219354 Al* 9/2011 Zhang et al. .. 717/104
’ 2011/0231317 AL™* 9/2011 Arsaccccceoevvvvevnnennene. 705/50
. . 2011/0314075 Al* 12/2011 Boldyrevetal. 709/201
(73) Assignee: SAP AG, Walldorf (DE) 2012/0072917 AL* 3/2012 Boldyrev et al. 718/104
. . o . 2012/0123962 A2* 52012 Brunswig et al. ... 705/348
(*) Notice: Subject to any disclaimer, the term of this 2012/0173437 Al* 7/2012 Barkeretal. 705/301
patent is extended or adjusted under 35 383;8%23% ii : lgggg gh i 770155//722;
umar et al.
US.C. 154(b) by 308 days. 2013/0007063 Al* 12013 Kalraetal ... 707/796
(21) Appl. No.: 13/931,317 * cited by examiner
(22) Filed: Jun. 28, 2013 Primary Examiner — Jue Louie
(65) Prior Publication Data Assistant Examiner — Roberto E Luna .
(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
US 2015/0007126 Al Jan. 1, 2015 &TFox PLL.C.
(51) Imt.ClL
GOGF 9/44 (2006.01) 7 ABSTRACT
G06Q 10/08 (2012.01) Disclosed herein are system, method, and computer program
(52) US.CL product embodiments for generating an optimal development
CPC . G060 10/08 (2013.01); GO6F 8/10 (2013.01) infrastructure. An embodiment operates by decomposing a
(58) Field of Classification Search development process into one or more functional require-
None ments, mapping each functional requirement of the decom-
See application file for complete search history. posed development process to the one or more corresponding
functional capabilities, and selecting one or more services
(56) References Cited operable to implement each mapped functional capability,
wherein each service comprises one or more functional capa-
U.S. PATENT DOCUMENTS bilities.
5,604,824 A * 2/1997 Chuietal. ... 382/248
6,910,204 B1* 6/2005 Rossomando 717/108 18 Claims, 4 Drawing Sheets
300
34 -, decompose a developmant process into one or more funciional
-~ raquirernants
320 .| map sach functional requirement of the decomposed development process
o one or more corresponding lunclional capabiiities
30 ™1 select one or more services operable to implement each mapped functional
- capabiiity
240 ”‘\ incorporats inte the development infrastruciure an optimat selaction of
™ services

US 9,330,372 B2

Sheet 1 of 4

May 3, 2016

U.S. Patent

(=]

L "Oid

(443
utp sjusiio

04l
8oy sinshs
BUUMY

0zt
oot
BOUIBS 1

ghi
Bl fiieectg]
SEBD0L

QL1 JCLEBUSDY [1]

il
ICMBLUELS PN

Zi
fiopsodey aninog

204 (1) aimoniseiLy
HeLdaRAS(]

904
u| sjooL
swdofanaqg

01 wiofe|d juswdojgreq

Z01L HOMBN

US 9,330,372 B2

Sheet 2 of 4

May 3, 2016

U.S. Patent

(&)
o~

[4%4
UL sapijiqeden feuonoun 4

¢ 9ld

s
i

912 BojejeD sea1nag |g

B0T

8i¢
Jaddepy

0ce
Jaziudo

0zl
FlOLETET
a01M9g |Q

UL BE0MISBS i

y0¢
(1Q) aumponuselu| Juswdoljarag

81
1asodwosaq
$582014

(4] 74
U}, sjuswiaiinbay [euonosung

s

¥ 1z Bojeyen ssenoid Juswdopneq

902

21N

U’} $985990.d4-ang

91 | 10]e1Luag) |

c0e
$5900.1d Juswdojansq

US 9,330,372 B2

Sheet 3 of 4

May 3, 2016

U.S. Patent

00¢

€ Ol

SOHAIRS
O UCHOMSS PRUNCC UB aUNIonASEaks luswdoiBasp By Oe iiedioou

Appqeden
jfeuonsuny poddew yoes piswsidun o) sigeiedo Sa01AIS SI10W 30 BUG 10858

£in

samiceden puogoury HUpUOdSBLIN0 S0 30 BUD O
5590040 WowdoBasn Pesoduicssp U 10 Wswsanbal jpuchoUn yves dew

syusanbes
fUalouUN; Sou 10 suo o sseooud wsuido|sasp B saodwionep

o
o
<&

174

Gie

US 9,330,372 B2

Sheet 4 of 4

May 3, 2016

U.S. Patent

oo¥

O7 UBd SUDHEDILINUILIOD e

82y (sanlmus
{(s)yiomiau

¥ Old

‘(s)ao1aap ajoway

ZZy Yun sbeioig

1744
SOBHAIL SUOERMILLLIOS

A -\-\-\-\\\\\}\7

a|qeaoway -

81 Hun ebeloyg

0cy soepB|

¥1¥ @Al sbelolg

a|genoway

0¥

4

N

a|qeAcway

Ziy
aAuQ ysIg pieH

0Ly Aowspy Aepuodag

’ is;....iii%&a\i\\\::\::»/

(sjsmnar ndingyindu josn &

Z0v (s)a0epau|
indinonduj Jesn

80F Alowaly urep

Yesnnninsmnmnsssnsannomsood oy,

/ﬁ\\.\:\\.\.::\.::.

$0p J0ssad0I1d

,

90p eunpanisenu)
UoREdIUNWIWOD

US 9,330,372 B2

1
GENERATING AN IMPROVED
DEVELOPMENT INFRASTRUCTURE

BACKGROUND

Development platforms are relied upon to meet business
demands and productivity goals. Development platforms
enable the implementation of development processes by pro-
viding access to authoring tools, source code repositories,
and/or runtime systems that work for various programming
models (e.g., C++, Java, Ruby). In designing development
platforms, there may be a tradeoff between complexity in the
development infrastructure and efficiency with respect to
learning, utilizing, and maintaining complex development
infrastructure. Inefficiency may in turn impair developer pro-
ductivity.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated herein and
form a part of the specification.

FIG. 1 is a block diagram of a system architecture for a
development platform, according to an example embodi-
ment.

FIG. 2 is a block diagram showing a development platform
and an expanded view of a development infrastructure gen-
erator, according to an example embodiment.

FIG. 3 is a flowchart illustrating a process for generating an
improved development infrastructure, according to an
example embodiment.

FIG. 4 is an example computer system useful for imple-
menting various embodiments.

In the drawings, like reference numbers generally indicate
identical or similar elements. Additionally, generally, the left-
most digit(s) of a reference number identifies the drawing in
which the reference number first appears.

DETAILED DESCRIPTION

Provided herein are system, method and/or computer pro-
gram product embodiments, and/or combinations and sub-
combinations thereof, for generating an improved or even an
optimal development infrastructure.

An overall development landscape, useful to a software
developer, may include development tools (e.g., for authoring
and producing design artifacts), runtime systems (e.g., for
qualifying software), and/or development infrastructure (e.g.,
for implementing development processes). Development
infrastructure (DI) may deal with issues related to central
storage, quality assurance, and/or other building blocks of
development process implementation such as, for example,
providing a source code repository (e.g., Git, SVN), provid-
ing a build manager (e.g., Maven) etc. Development infra-
structure may reflect the implementation of one or more
development processes. A development process may give rise
to various functional requirements (e.g., require structured
storage, exclusive locking on editing source files, versioning,
change recording, code-line management). Functional
requirements may be satisfied by services comprised of vari-
ous functional capabilities. A service may include a broad
variety of functional capabilities depending, for example, on
the scope, purpose etc. not all of which are necessary to
satisfy a functional requirement.

Also, development infrastructures can be complex. A
development process may be comprised of various steps or
sub-processes. Without knowing each step or sub-process, it
may not be possible to assess specific functional requirements

10

15

20

25

30

35

40

45

50

55

60

65

2

for a given development process. Complexity may be intro-
duced by the nature of the development processes. Also,
adapting variations of the same or of similar development
processes implicates a range of similar or variant functional
requirements. Since not all DI services satisfy all functional
requirements, past approaches have been overly inclusive,
blindly incorporating various functional capabilities that are
not used. Problems with these past approaches include intro-
ducing unnecessary complexity which may result in ineffi-
ciency (e.g., prevent reuse of similar or common pre-existing
solutions, increase the difficulty and/or cost of use, imple-
mentation, maintenance etc.). These problems increase learn-
ing barriers for developers, increase the amount of effort
required to implement development processes, and/or may
otherwise impair developer productivity by increasing the
overall difficulty of maintaining such development infra-
structures. What is needed is a way to match specific func-
tional requirements for a development process to specific
functional capabilities and their associated services.

In an example embodiment, a system, method, and com-
puter program product are provided for decomposing a devel-
opment process into one or more sub-processes. Functional
requirements associated with each sub-process may be iden-
tified. Functional requirements may correspond to one or
more functional capabilities. Functional capabilities are asso-
ciated with development infrastructure services. By decom-
posing a larger, overall development process into a more
granular series of sub-processes and determining require-
ments for each sub-process, it is possible to precisely identify
a corresponding capability needed and narrowly tailor a
selection of services to minimize unnecessary complexity in
development infrastructure.

By way of example not of limitation, in some cases it may
be optimal to select one or more broad services that support a
wide range of capabilities (herein, use of optimal includes
improved but sub-optimal solutions and/or approaches). For
example, this may be optimal when a development process is
generic, common, basic, standardized etc. and a service, or set
of services, is already tailored to meet each of its require-
ments (e.g., off the shelf solution). In other cases, it may be
optimal to select a series of targeted services that match each
requirement by providing capabilities to address particular
requirements (e.g., one-to-one). In other cases, a combination
of both approaches may be optimal. The latter may require
determining which of a set of services satisfies each require-
ment but minimizes a quantity of unnecessary or unmatched
functional capabilities associated with each service. Unnec-
essary functional capabilities may increase complexity.

In an example embodiment, DI services that satisfy all or
selected functional requirements are identified. This is
achieved by mapping functional requirements to one or more
functional capabilities. It is also possible to differentiate
between individual DI services and to minimize unnecessary
complexity by selecting a set, or combination, of DI services
that minimizes unnecessary functional capabilities. It is also
possible to select an optimal set of DI services from among
various sets of DI services, such that the selected set of DI
services includes the least unnecessary functional capabilities
while still meeting all functional requirements. Catalogs of
development processes and DI services may be employed.

FIG. 1 shows an example system architecture 100 associ-
ated with a development platform 104. Development plat-
form 104 may be connected to one or more clients 1 .. .n122
over a network 102. One or more developer users of clients
122 may interact with development platform 104 to develop,
implement, test, release, and/or maintain any type of pro-
gramming work product (e.g., software, software modules,

US 9,330,372 B2

3

code etc.). A person having skill in the relevant art(s) would
appreciate that development platform 104 is not limited to a
particular kind of software development but may include, for
example, the development of software as a service, develop-
ment of applications configured to operate in a web browser,
mobile operating system, mobile browser etc.

In an example embodiment, development platform 104
includes one or more development tools 1 . . . n 106, a
development infrastructure (DI) 108, and one or more runt-
ime systems 1 . . . n 110. Development infrastructure 108
includes a source repository 112, a build framework 114,
and/or a DI generator 116. Source repository 112 may be afile
archive and/or hosting facility where source code may be
stored. Build framework 114 may manage development using
a project object model (POM), or other paradigm, to provide
a uniform build system. Build framework 114 allows devel-
opment to be managed among a plurality of clients 1 ... n122.
DI generator 116 may include a process decomposer 118
and/or a DI service selector 120, each of which will be
described in the context of FIG. 2.

FIG. 2 shows an expanded view of DI generator 116, pro-
cess decomposer 118, and DI service selector 120. In an
example embodiment, DI service selector 120 includes a
mapper 218 and an optimizer 220. As shown in FIG. 2, a
development process 202 may be decomposed by process
decomposer 118 into one or more sub-processes 1 ... n 206.
For example, development process 202 may be divisible into
discrete functional sub-parts or sub-processes 1 . . . n 206
(e.g., process steps). Each sub-process 206 may implicate one
or more functional requirements 1 . . . n 210. A functional
requirement 210 corresponds to one or more functional capa-
bilities 1 ... n212. In a non-limiting example, a sub-process
may require creating versions of a source file (i.e., the func-
tional requirement being creating versions of a source file),
which in turn may implicate the functional capability of
source versioning. Other non-limiting examples of functional
requirements and corresponding functional capabilities
include requiring storing source files in folder-file hierarchies
and the capability of structured storage, requiring a way to get
information about content in a repository and the capability of
browsing files, requiring the ability to register changes of
content from a base-line state and the capability of change
recording, requiring managing different code-lines in the
form of branching and the capability of release management,
requiring tagging or labeling states of software for release and
the capability of release management, etc. A person having
skill in the relevant art(s) would appreciate that such func-
tional capabilities may satisfy more than one functional
requirement and may also be extended to any function
capable of being provided on development platform 104.

In an example embodiment, functional capability 212 may
be associated with one or more DI services 1 ...n 208 and DI
service 208 is comprised of one or more functional capabili-
ties 1 ... n212. DI service 208 is the selectable unit incor-
porated into development infrastructure 204, as shown in
FIG. 2. Selection of a set of DI services 1 . .. n 208 depends
upon a mapping of functional requirements 1 . . . n 210 to
functional capabilities 1 . . . n 212 and an optimization of the
selection of associated DI services 1 . . . n 208. Mapping one
or more functional requirements 1 . . . n 210 for a given
development process 202 to one or more functional capabili-
ties 1 ...n 212 is performed by mapper 218. Optimization of
the selection of DI services 1 .. .1 208 to a set that minimizes
complexity while satisfying all of functional requirements
1...n210 is performed by optimizer 220.

In an example embodiment, mapper 218 scans a DI ser-
vices catalog 216 in order to determine which DI services

10

15

20

25

30

35

40

45

50

55

60

65

4

include target functional capabilities 1 .. .n212. More than a
single DI service may include one or more target functional
capabilities 1 . . . n 212. DI services catalog 216 may be
queried to provide additional information regarding each DI
service, allowing for a decision to be made between two or
more DI services (e.g., given that each DI service may satisfy
one or more target functional capabilities 1 . . . n 212).

In an example embodiment, optimizer 220 executes a
query against the cataloged entry stored in DI services catalog
216 in order to determine the number of other unique func-
tional capabilities that are also not part of target functional
capabilities 1 . . . n 212. In this manner, optimizer 220 deter-
mines a measure or quantity of unnecessary functional capa-
bilities based on indexing and scoring which of target func-
tional capabilities 1 . . . n 212 (e.g., associated with one or
more target functional requirements 1 . . . n 210) will be
satisfied by each DI service relative to unnecessary functional
capabilities. Optimizer 220 calculates such a score for each
DI service and generates combinations of different DI ser-
vices and/or variants thereof. Optimizer 220 totals the score
of each set of DI services to generate a ranking of DI service
sets that provide all target functional capabilities 1 . . . n 212
while minimizing the amount or quantity of unnecessary
functional capabilities. Once ranked, the optimal set of one or
more DI services 1 ... 1n208 is selected and incorporated into
development infrastructure 204 for implementation of devel-
opment process 202.

In an example embodiment, a development process catalog
214 provides an index of standardized sub-processes 1 ...n
206 and functional requirements 1 . . . n 210. Standard des-
ignation for each unique sub-process 206 and each unique
functional requirement 210 may be indexed in development
process catalog 214 in association with one or more keys,
terms, semantic descriptions, etc. In a non-limiting example,
sub-process 206 may refer to a standard catalog entry for
“share work™ associated with the semantic “publish changed
source code to the team.” Such a standardized entry in devel-
opment process catalog 214 may be cross-indexed with func-
tional requirement 210 which encodes (e.g., for mapper 218
to identify) “requiring the ability to share/publish work™ or
some other corresponding input. In this manner, development
process catalog 214 provides a uniform vocabulary for asso-
ciating sub-processes 1 . . . n 206 with pre-configured,
encoded, and/or semantically defined functional require-
ments 1 .. .n 210. Development process catalog 214 may
include known development processes thereby effectively
describing development processes as well as sub-processes
1 ... n 206. Utilizing development process catalog 214
enables the integration of development process 202 decom-
position with the operation of mapper 218.

By way of a non-limiting example, development process
202 is comprised of standard sub-processes 1 . .. n 206 which
may be recognized by process decomposer 118 to map
directly to one or more entries in development process catalog
214. Similarly, entries in DI services catalog 216 may also be
cross-indexed with standard functional capabilities 1 . . . n
212 which encode a range of inputs. In this manner, DI
services catalog 216 may provide a standard vocabulary for
associating DI services directly with pre-determined,
encoded, and/or semantically defined functional capabilities
1 .. .n 212. Direct association by cataloging, whether in
development process catalog 214 or DI services catalog 216,
may be pre-configured and/or annotated on the fly. Catalogs
may evolve as standards for development infrastructure
evolve and/or require extension.

In an example embodiment, source control management
(SCM) represents a DI service operable to implement stan-

US 9,330,372 B2

5

dard functional capabilities including, but not limited to,
browsing of source files (e.g., providing a way to access
information regarding content stored in a repository), struc-
tured storage (e.g., enabling storage of sources files in folder
and/or file hierarchies), source versioning (e.g., creation,
deletion, maintaining different versions of a source file),
change recording (e.g., enabling registration of changes made
to content from a baseline, enabling denoting lifecycles for
changes), code-line management (e.g., enabling isolation of
code-lines, code-line management in the form of branching),
release management (e.g., tagging or labeling as ready to
distribute to customers) etc. In the preceding example
embodiment, standardized functional capabilities may be
provided which may employ a unified vocabulary and/or
semantic structure. Standardization may enable the direct
integration of development process 202, which dictates each
functional requirement 210 that is mapped to each functional
capability 212, and development infrastructure 204, which
implements development process 202 using DI services 1 ...
n 208 as selected based on an optimization of matched func-
tional capabilities and narrowly tailored services.

FIG. 3 is a flow diagram of a method for generating an
optimal development infrastructure, according to an example
embodiment.

Method 300 begins at step 310, where a development pro-
cess is decomposed into one or more functional requirements.
In an example embodiment, in step 310, process decomposer
118 decomposes development process 202 into sub-pro-
cesses 1...1n206. Inthis manner, sub-processes 1 . .. n 206,
associated with each development process 202, are identified.
Sub-process 206 may include a step, phase, period, or any
other divisible unit of a development process. As shown in
FIG. 2, process decomposer 118 receives as input develop-
ment process 202 and outputs sub-processes 1 . .. n 206. By
way of a non-limiting example, process decomposer 118 may
be a parser or other operational unit configured to identify
breaks, transitions, and/or natural divisions within develop-
ment process 202 and may be configured to determine into
what constituent parts to divide up development 202 (e.g.,
into sub-processes 1 ...1n206). Sub-processes 1 ...1n206 may
include further sub-divisions and are not limited to a single
series, sub-set, or other direct division. By way of non-limit-
ing example, sub-processes 1 .. .n 206 may represent a nested
and/or hierarchical division of development process 202 into
phases comprised of sub-phases and further sub-phases, steps
comprised of sub-steps and further sub-steps etc. Each sub-
process 206 may implicate one or more functional require-
ments 1 ...n 210. A functional requirement 210 may corre-
spond to one or more functional capabilities 1 .. . n 212. A
person having skill in the relevant art(s) would appreciate that
such functional capabilities may satisfy more than one func-
tional requirement and may also be extended to any function
capable of being provided on development platform 104.

In an example embodiment, in step 310, each sub-process
206 may be mapped to a corresponding entry in a develop-
ment process catalog, each entry in the development process
catalog defined by one or more functional requirements. As
shown in FIG. 2, sub-processes 1 . . . n 206 are connected to
development process catalog 214 which is connected to one
or more functional requirements 1 . . . n 210. Functional
requirements 1 .. .n 210 may be comprised of a data structure
associated with storage on development platform 104. In an
example embodiment, in step 310, development process cata-
log 314 comprises one or more indices of standardized devel-
opment sub-processes, the indices including a cross-refer-
ence to functional requirements 1 . . . n 210. The linking of
functional requirements 1 ... n 210 and sub-processes 1 . . .

20

35

40

45

6

n 206 to development process catalog 214 enables mapping to
standardized functional requirements which may be defined,
annotated, associated with metadata etc. to allow for various
encoded and/or semantic associations. By way of non-limit-
ing example, standardized functional requirements may cap-
ture best-practices, logic, or other forms of configuration
capable of facilitating the matching of sub-processes 1 ...n
206 to corresponding functional requirements 1 . . . n 210.

In an example embodiment, in step 320, each functional
requirement 210 of the decomposed development process
202 is mapped to one or more functional capabilities 1 ... n
212. A functional requirement may be found to correspond to
a functional capability if, for example, the functional require-
ment is satisfied by the functional capability. In an example
embodiment, mapper 218 searches for functional capabilities
1...n 212 which satisty each target functional requirement
210. Ifacorresponding functional capability 212 is identified,
its location is stored by mapper 218 for recall.

In an example embodiment, in step 320, each functional
capability 212 is mapped to one or more corresponding ser-
vices in a DI services catalog, each entry in DI services
catalog 216 defined by one or more functional capabilities
1...n212. DIservices may be defined by attributes other than
target functional capabilities 1 . . . n 212 including, but not
limited to, source, specification, scope, permissions etc. Map-
ping one or more functional requirements 1 . . . n 210 for a
given development process 202 to one or more functional
capabilities 1 . . . n 212 is performed by mapper 218.

In an example embodiment, functional capabilities 1 .. .n
212 are connected to DI services catalog 216 which is con-
nected to one or more DI services 1 . . . n 208. Functional
capabilities 1 ... n212 may exist as a data structure associated
with storage on development platform 104. DI services cata-
log 216 comprises one or more indices of standardized func-
tional capabilities, the indices including a cross-reference to
one or more services. Linking of functional capabilities 1 . . .
n 212 to DI services catalog 216 enables mapping in terms of
standardized functional capabilities which may be defined,
annotated, associated with metadata etc. to allow for a range
of encoded and semantic associations. By way of a non-
limiting example, standardized functional capabilities may
capture best-practices, logic, or other forms of configuration
capable of facilitating the matching of functional capabilities
1...n212 to services. In an example embodiment, mapper
218 scans DI services catalog 216 for one or more corre-
sponding functional capabilities 1 . . . n 212. DI services
catalog 216 indexes, cross-indexes, and/or associates each
functional capability 212 with one or more services. Upon
identifying a matching functional capability 212 in DI ser-
vices catalog 216, mapper 218 identifies each service associ-
ated with the target functional capability 212. A service may
be operable to implement any functional capability 212 with
which it is associated. By way of example not of limitation,
DI services catalog 216 utilizes a unified vocabulary scheme.

In an example embodiment, in step 330, services operable
to implement each mapped functional capability are selected.
A service may be comprised of one or more functional capa-
bilities. A service may contain a number of functional capa-
bilities which do not implement any target functional capa-
bility 212. By way of a non-limiting example, a service may
contain functional capabilities that were not identified by
mapper 218 as corresponding to one or more of functional
requirements 1 . ..n210. A service may thus be comprised of
both matched functional capabilities 1 . . . n 212 and
unmatched functional capabilities. Optimization is per-
formed on the selection of DI services 1 . .. n 208 in order to

US 9,330,372 B2

7

select a set that minimizes complexity while satisfying all of
functional requirements 1 . . . n 210. Such optimization is
performed by optimizer 220.

In an example embodiment, optimizer 220 executes a
query against the cataloged entry stored in D services catalog
216 to determine functional capabilities not matched to at
least one of target functional capabilities 1 . . . n 212. Opti-
mizer 220 thereby determines a measure or quantity of unnec-
essary functional capabilities based on indexing and scoring
which of target functional capabilities 1 . . . n 212 (e.g.,
associated with one or more target functional requirements
1...n210) is satisfied by each DI service relative to unnec-
essary functional capabilities. Optimizer 220 calculates a
score for each DI service and generates combinations of
different DI services and/or variants thereof for which overall
scores are generated. Optimizer 220 totals the score of each
set of DI services to generate a ranking of DI service sets
operable to implement all of the target functional capabilities
1...n 212 while minimizing the quantity of unnecessary
functional capabilities. Once ranked, the optimal set of DI
services 1 . .. n 208 may be selected.

In an example embodiment, selecting includes determin-
ing a first value for a first set of one or more services based on
aquantity of functional capabilities satisfying each functional
requirement relative to a quantity of functional capabilities
not satisfying any functional requirement. Selecting may then
include determining an Nth value for anext Nth set of services
based on a quantity of functional capabilities satisfying each
functional requirement relative to a quantity of functional
capabilities not satisfying any functional requirement. Select-
ing may then include ranking the first value through the Nth
value by which set of services minimizes a total quantity of
functional capabilities not associated with any functional
requirement while still satisfying each functional require-
ment. In this manner, the set of one or more services that
minimizes the total quantity of functional capabilities not
associated with any functional requirement while still satis-
fying each functional requirement may be selected.

In an example embodiment, in step 340, an optimal selec-
tion of services is incorporated into the development infra-
structure. Development infrastructure 204 is thus generated
to be comprised of the optimal selection of DI services 1. ..
n208. DIservices 1...n208 is the set of one or more services
determined to minimize the total quantity of functional capa-
bilities not associated with any functional requirement while
satisfying each functional requirement may be selected.
Reducing the overall quantity of functional capabilities to the
set of DI services optimally associated with functional
requirements 1 . . . n 210 in turn generates development
infrastructure 204 with a minimal amount of unnecessary
functional capabilities.

In an example embodiment, “cloud” infrastructures instan-
tiate virtual computing resources together with software. For
example, a Linux equipped computer environment may be
instantiated on cloud infrastructure. In the same or a similar
manner, DI services may be instantiated. Such DI services
may be pre-configured and/or may be instantiated following
selection and optimization. DI services catalog 216 may be
assigned a set of one or more images deployed to a virtual
machine to instantiate a DI service. Such images may encode
hardware and/or software operable to implement the DI ser-
vice. In this way, an optimal selection of services may be
incorporated into the development infrastructure.

Example Computer System

Various embodiments can be implemented, for example,
using one or more well-known computer systems, such as

10

15

20

25

30

35

40

45

50

55

60

65

8

computer system 400 shown in FIG. 4. Computer system 400
can be any well-known computer capable of performing the
functions described herein, such as computers available from
International Business Machines, Apple, Sun, HP, Dell, Sony,
Toshiba, etc.

Computer system 400 includes one or more processors
(also called central processing units, or CPUs), such as a
processor 404. Processor 404 is connected to a communica-
tion infrastructure or bus 406.

Computer system 400 also includes user input/output
device(s) 403, such as monitors, keyboards, pointing devices,
etc., which communicate with communication infrastructure
406 through user input/output interface(s) 402.

Computer system 400 also includes a main or primary
memory 408, such as random access memory (RAM). Main
memory 408 may include one or more levels of cache. Main
memory 408 has stored therein control logic (i.e., computer
software) and/or data.

Computer system 400 may also include one or more sec-
ondary storage devices or memory 410. Secondary memory
410 may include, for example, a hard disk drive 412 and/or a
removable storage device or drive 414. Removable storage
drive 414 may be a floppy disk drive, a magnetic tape drive, a
compact disk drive, an optical storage device, tape backup
device, and/or any other storage device/drive.

Removable storage drive 414 may interact with a remov-
able storage unit 418. Removable storage unit 418 includes a
computer usable or readable storage device having stored
thereon computer software (control logic) and/or data.
Removable storage unit 418 may be a floppy disk, magnetic
tape, compact disk, DVD, optical storage disk, and/any other
computer data storage device. Removable storage drive 414
reads from and/or writes to removable storage unit 418 in a
well-known manner.

According to an exemplary embodiment, secondary
memory 410 may include other means, instrumentalities or
other approaches for allowing computer programs and/or
other instructions and/or data to be accessed by computer
system 400. Such means, instrumentalities or other
approaches may include, for example, a removable storage
unit 422 and an interface 420. Examples of the removable
storage unit 422 and the interface 420 may include a program
cartridge and cartridge interface (such as that found in video
game devices), a removable memory chip (such as an
EPROM or PROM) and associated socket, a memory stick
and USB port, a memory card and associated memory card
slot, and/or any other removable storage unit and associated
interface.

Computer system 400 may further include a communica-
tion or network interface 424. Communication interface 424
enables computer system 400 to communicate and interact
with any combination of remote devices, remote networks,
remote entities, etc. (individually and collectively referenced
by reference number 428). For example, communication
interface 424 may allow computer system 400 to communi-
cate with remote devices 428 over communications path 426,
which may be wired and/or wireless, and which may include
any combination of LANs, WANS, the Internet, etc. Control
logic and/or data may be transmitted to and from computer
system 400 via communication path 426.

In an embodiment, a tangible apparatus or article of manu-
facture comprising a tangible computer useable or readable
medium having control logic (software) stored thereon is also
referred to herein as a computer program product or program
storage device. This includes, but is not limited to, computer
system 400, main memory 408, secondary memory 410, and
removable storage units 418 and 422, as well as tangible

US 9,330,372 B2

9

articles of manufacture embodying any combination of the
foregoing. Such control logic, when executed by one or more
data processing devices (such as computer system 400),
causes such data processing devices to operate as described
herein.

Based on the teachings contained in this disclosure, it will
be apparent to persons skilled in the relevant art(s) how to
make and use the invention using data processing devices,
computer systems and/or computer architectures other than
that shown in FIG. 4. In particular, embodiments may operate
with software, hardware, and/or operating system implemen-
tations other than those described herein.

CONCLUSION

It is to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections (if any), is
intended to be used to interpret the claims. The Summary and
Abstract sections (if any) may set forth one or more but not all
exemplary embodiments of the invention as contemplated by
the inventor(s), and thus, are not intended to limit the inven-
tion or the appended claims in any way.

While the invention has been described herein with refer-
ence to exemplary embodiments for exemplary fields and
applications, it should be understood that the invention is not
limited thereto. Other embodiments and modifications
thereto are possible, and are within the scope and spirit of the
invention. For example, and without limiting the generality of
this paragraph, embodiments are not limited to the software,
hardware, firmware, and/or entities illustrated in the figures
and/or described herein. Further, embodiments (whether or
not explicitly described herein) have significant utility to
fields and applications beyond the examples described herein.

Embodiments have been described herein with the aid of
functional building blocks illustrating the implementation of
specified functions and relationships thereof. The boundaries
of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined as long as the specified func-
tions and relationships (or equivalents thereof) are appropri-
ately performed. Also, alternative embodiments may perform
functional blocks, steps, operations, methods, etc. using
orderings different than those described herein.

References herein to “one embodiment,” “an embodi-
ment,” “an example embodiment,” or similar phrases, indi-
cate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may not necessarily include the particular feature, structure,
or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it would be within the knowledge of
persons skilled in the relevant art(s) to incorporate such fea-
ture, structure, or characteristic into other embodiments
whether or not explicitly mentioned or described herein.

The breadth and scope of the invention should not be lim-
ited by any of the above-described exemplary embodiments,
but should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:
1. A computer implemented method for generating devel-
opment infrastructure, comprising:
decomposing a development process into one or more
functional requirements, the functional requirements
corresponding to one or more functional capabilities;

10

15

20

25

30

35

40

45

50

55

60

65

10

mapping each functional requirement of the decomposed
development process to the one or more corresponding
functional capabilities;

determining a first value for a first set of services based on

a quantity of functional capabilities satisfying each
functional requirement relative to a quantity of func-
tional capabilities not satisfying any functional require-
ment;

determining a second value for a second set of services

based on a quantity of functional capabilities satisfying
each functional requirement relative to a quantity of
functional capabilities not satisfying any functional
requirement;

ranking the first value and the second value according to

which set of services minimizes a total quantity of func-
tional capabilities not associated with any functional
requirement while still satisfying each functional
requirement; and

selecting the set of services that minimizes the total quan-

tity of functional capabilities not associated with any
functional requirement while still satisfying each func-
tional requirement.

2. The method of claim 1, further comprising:

incorporating into the development infrastructure an opti-

mal selection of services, the optimal selection of ser-
vices being the selection that satisfies each functional
requirement while minimizing the quantity of functional
capabilities not satisfying any functional requirement.

3. The method of claim 1, the decomposing further com-
prising:

identifying one or more sub-processes associated with

each development process; and

mapping each sub-process to a corresponding entry in a

development process catalog, each entry in the develop-
ment process catalog defined by one or more functional
requirements.

4. The method of claim 3, wherein the development pro-
cess catalog comprises one or more indices of standardized
development sub-processes, the indices including a cross-
reference to one or more standardized functional require-
ments associated with each standardized development sub-
process.

5. The method of claim 1, the mapping further comprising:

scanning a development infrastructure services catalog, the

development infrastructure services catalog comprising
one or more services associated with one or more func-
tional capabilities; and

identifying a matching functional capability for each func-

tional requirement, wherein each functional capability is
associated with one or more services.

6. The method of claim 5, wherein the development infra-
structure services catalog comprises one or more indices of
standardized functional capabilities, the indices including a
cross-reference to one or more services associated with each
standardized functional capability.

7. A system, comprising:

a memory; and

at least one processor coupled to the memory and config-

ured to:

decompose a development process into one or more
functional requirements, the functional requirements
corresponding to one or more functional capabilities;

map each functional requirement of the decomposed
development process to the one or more correspond-
ing functional capabilities;

determine a first value for a first set of services based on
a quantity of functional capabilities satisfying each

US 9,330,372 B2

11

functional requirement relative to a quantity of func-
tional capabilities not satisfying any functional
requirement;

determine a second value for a second set of services
based on a quantity of functional capabilities satisfy-
ing each functional requirement relative to a quantity
of functional capabilities not satisfying any functional
requirement;

rank the first value and the second value according to
which set of services minimizes a total quantity of
functional capabilities not associated with any func-
tional requirement while still satisfying each func-
tional requirement; and

select the set of services that minimizes the total quantity
of functional capabilities not associated with any
functional requirement while still satisfying each
functional requirement.

8. The system of claim 7, the at least one processor further
configured to:

incorporate into the development infrastructure an optimal

selection of services, the optimal selection of services
being the selection that satisfies each functional require-
ment while minimizing the quantity of functional capa-
bilities not satistying any functional requirement.

9. The system of claim 7, the at least one processor when
configured to decompose further configured to:

identify one or more sub-processes associated with each

development process; and

map each sub-process to a corresponding entry in a devel-

opment process catalog, each entry in the development
process catalog defined by one or more functional
requirements.

10. The system of claim 9, wherein the development pro-
cess catalog comprises one or more indices of standardized
development sub-processes, the indices including a cross-
reference to one or more standardized functional require-
ments associated with each standardized development sub-
process.

11. The system of claim 7, the at least one processor when
configured to map further configured to:

scan a development infrastructure services catalog, the

development infrastructure services catalog comprising
one or more services associated with one or more func-
tional capabilities; and

identify a matching functional capability for each func-

tional requirement, wherein each functional capability is
associated with one or more services.

12. The method of claim 11, wherein the development
infrastructure services catalog comprises one or more indices
of standardized functional capabilities, the indices including
a cross-reference to one or more services associated with each
standardized functional capability.

13. A non-transitory computer-readable medium having
instructions stored thereon that, when executed by at least one
computing device, causes the at least one computing deviceto
perform operations comprising:

decomposing a development process into one or more

functional requirements, the functional requirements
corresponding to one or more functional capabilities;

10

15

20

25

30

35

40

45

50

55

12

mapping each functional requirement of the decomposed
development process to the one or more corresponding
functional capabilities;

determining a first value for a first set of services based on

a quantity of functional capabilities satisfying each
functional requirement relative to a quantity of func-
tional capabilities not satisfying any functional require-
ment;

determining a second value for a second set of services

based on a quantity of functional capabilities satisfying
each functional requirement relative to a quantity of
functional capabilities not satisfying any functional
requirement;

ranking the first value and the second value according to

which set of services minimizes a total quantity of func-
tional capabilities not associated with any functional
requirement while still satisfying each functional
requirement; and

selecting the set of services that minimizes the total quan-

tity of functional capabilities not associated with any
functional requirement while still satisfying each func-
tional requirement.

14. The computer-readable device of claim 13, the opera-
tions further comprising:

incorporating into the development infrastructure an opti-

mal selection of services, the optimal selection of ser-
vices being the selection that satisfies each functional
requirement while minimizing the quantity of functional
capabilities not satisfying any functional requirement.

15. The computer-readable device of claim 13, the opera-
tions when decomposing further comprising:

identifying one or more sub-processes associated with

each development process; and

mapping each sub-process to a corresponding entry in a

development process catalog, each entry in the develop-
ment process catalog defined by one or more functional
requirements.

16. The computer-readable device of claim 15, wherein the
development process catalog comprises one or more indices
of standardized development sub-processes, the indices
including a cross-reference to one or more standardized func-
tional requirements associated with each standardized devel-
opment sub-process.

17. The computer-readable device of claim 13, the opera-
tions when mapping further comprising:

scanning a development infrastructure services catalog, the

development infrastructure services catalog comprising
one or more services associated with one or more func-
tional capabilities; and

identifying a matching functional capability for each func-

tional requirement, wherein each functional capability is
associated with one or more services.

18. The computer-readable device of claim 17, wherein the
development infrastructure services catalog comprises one or
more indices of standardized functional capabilities, the indi-
ces including a cross-reference to one or more services asso-
ciated with each standardized functional capability.

#* #* #* #* #*

